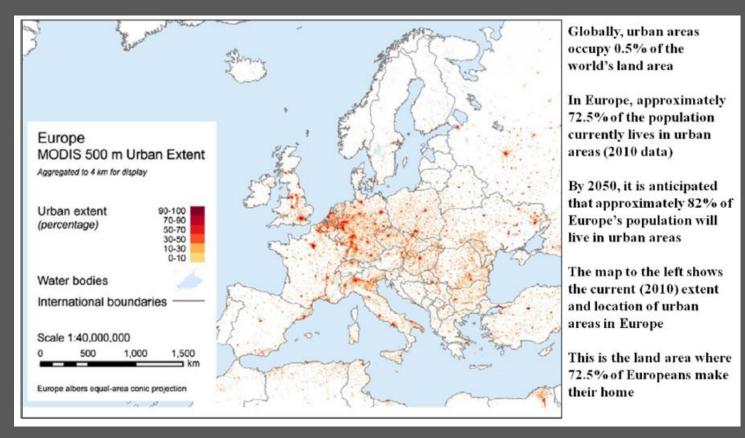
How can ecosystem services help us plan better urban GI?

Dr Peter Phillips

Collingwood Environmental Planning Ltd SGIF Conference 6th October 2015


Outline

- Context
 - urbanisation pressures
 - what is urban GI?
 - urban GI functions / benefits
 - trends in urban natural capital and ecosystem services
 - the need for better strategic planning of urban GI?
- Demand led planning of urban GI a conceptual framework
- Spatial modelling of urban GI demand
 - runoff reduction services an example
- Planning for multiple benefits
- Delivery mechanisms for strategic urban GI

Urbanisation places pressure on the urban land resource

Extent and location of urban areas in Europe (2010)

(Adapted from: Schneider et al, 2009; EEA, 2015)

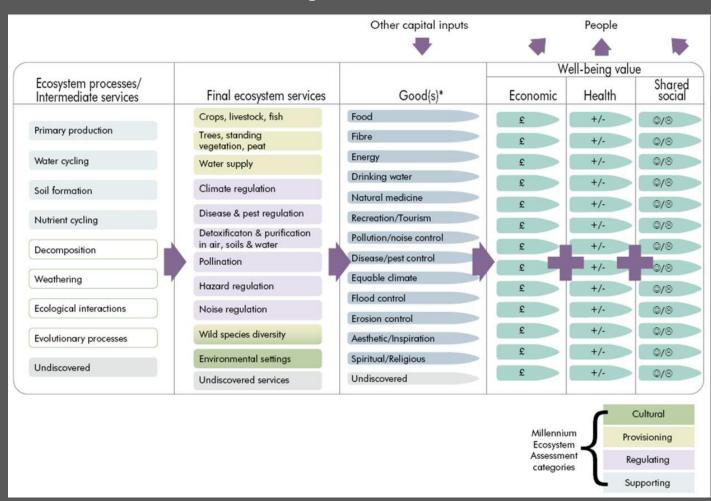

In cities green and natural environment type land uses provide a 'backbone' of greenspace and semi-natural habitats

Green infrastructure planning at the neighbourhood scale

- · Street trees
- · Rain gardens
- · Swales
- Small scale attenuation basins
- · Roof gardens and green roofs
- · Pocket parks
- · Collective and/or private gardens
- · Community growing spaces
- Urban plazas
- · Ponds and small woodlands
- Footpaths

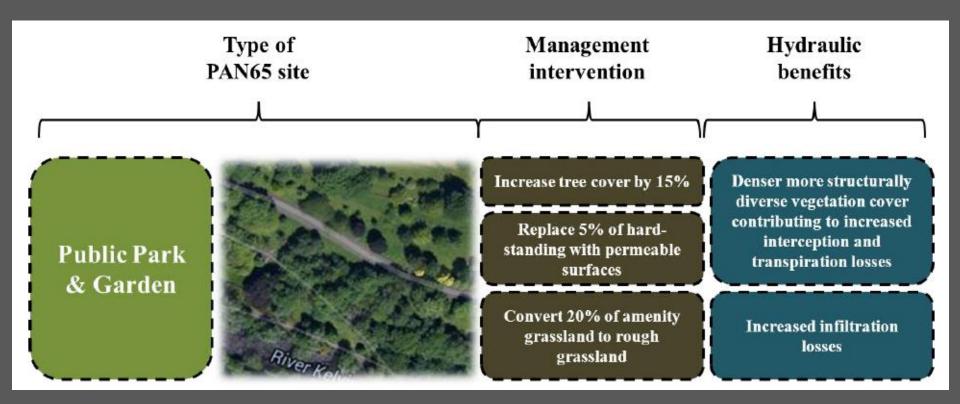
Green infrastructure planning at the town or city district scale

- · City parks and gardens
- · Urban canals and waterways
- · Multi-user routes
- · Urban commons
- · Urban forest parks
- · Country parks and estates
- · Continuous waterfronts
- · Municipal plazas
- · Major sports and recreational spaces
- · Regional SuDS schemes


Green infrastructure planning / design at different scales

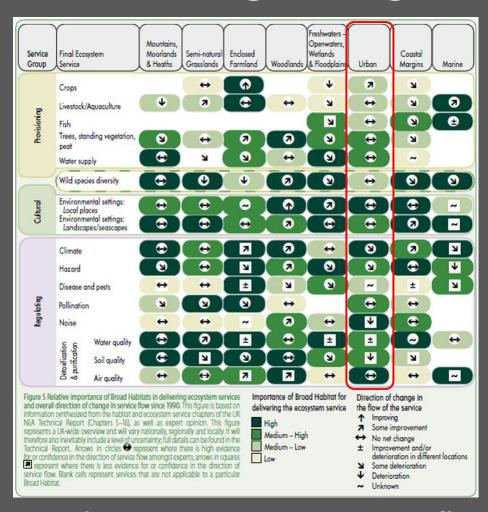
(Adapted from: Landscape Institute, undated; EEA, 2006; Baro et al, 2015)

Urban GI provides a range of functions / benefits – ecosystem services


UKNEA ecosystem services framework

(Source: Mace et al, 2011)

Urban GI provides a range of functions / benefits – ecosystem services


Managing urban GI for runoff reduction ecosystem services

(Source: Phillips, 2014)

Critical urban ecosystem services are in decline – regulating services

"The UK's ecosystems are currently delivering some services well but others are in long term decline"

"The UK population will continue to grow [...] this is likely to increase pressure on ecosystem services..."

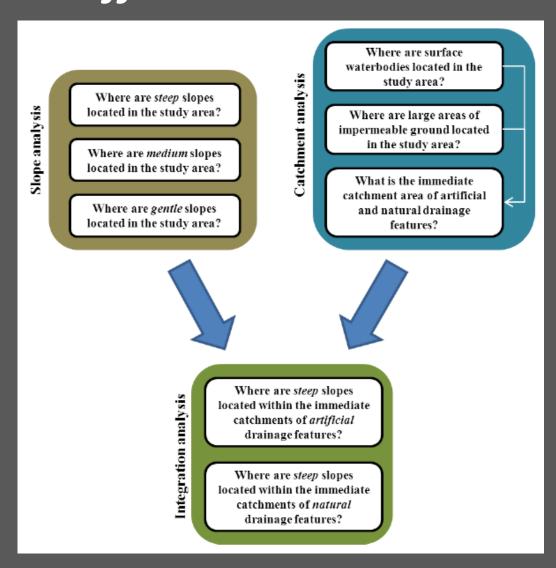
(UKNEA, 2011 p.5)

Trends in UK ecosystem service flows since 1990

(Source: UKNEA, 2011)

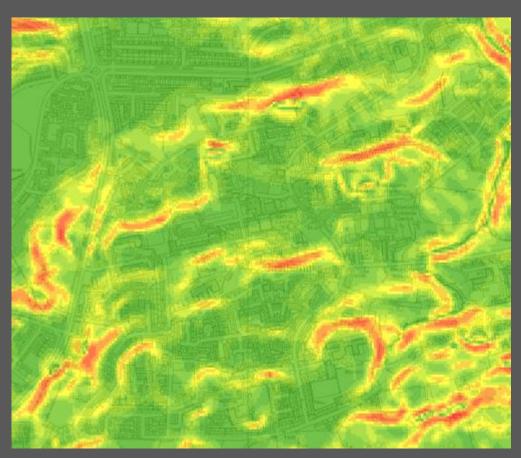
There is a need for better strategic planning of urban GI to ensure the provision of critical ecosystem services in the right places

- Recognition at the project level of the need to work with rather than against nature (Susdrain, 2012; Gret-Regamey et al, 2013)
- Great policy framework in Scotland (Scottish Government, 2011a; Scottish Government, 2011b; Scottish Government, 2014)
- But we are lacking <u>practical</u> tools / techniques / frameworks to help urban planners take a <u>strategic view</u> of GI assets in their city (Chan et al, 2006; Gret-Regamey *et al*, 2013; Labiosa *et al*, 2013):
 - what do we have now / what needs to be protected?
 - what might we need in the future and where?
 - how can we prioritise investment?


Demand led planning of urban GI – a conceptual framework

- Causal variables (after Eigenbrod et al, 2010; Sheate et al, 2012; Bellamy and Winn, 2013)
- Rapid evidence assessment (REA) to determine causal variables for key ecosystem services
- Integration of causal variables with new GIS based spatial models

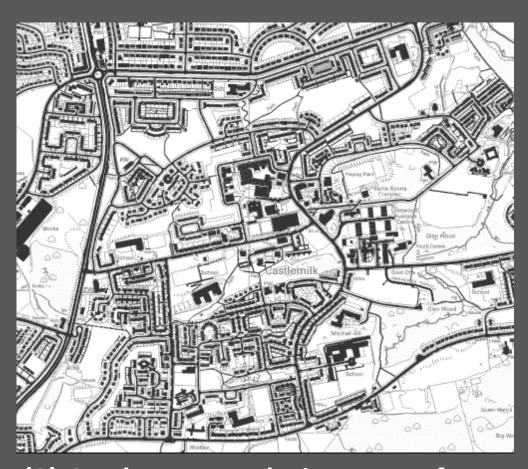
Ecosystem service	Causal variable/contextual factor affecting service provision
Flood storage – see section 7.2	 Fluvial flood risk: flood extent and receptors affected under 1/200 year event, anticipated location of flooding within the catchment Morphology: presence and location of culvert and realignment pressures Floodplain vegetation: type and location of existing vegetation cover, ecological potential to create new natural/semi-natural habitat – floodplain woodland and wetland Floodplain topography: floodplain cross-section gradient, presence and location of fine scale topographical features in the floodplain
Runoff reduction – see section 7.3	 Pluvial flood risk: flood extent under 1/200 year event Topography: location of steeply sloped ground Surface waterbodies: location, immediate catchment area Impermeable ground: location, immediate catchment area
Ecological networks – see section 7.4	 Habitat patches: location, size Functional habitat networks: location, size Ecological potential of land for habitat establishment: location, value



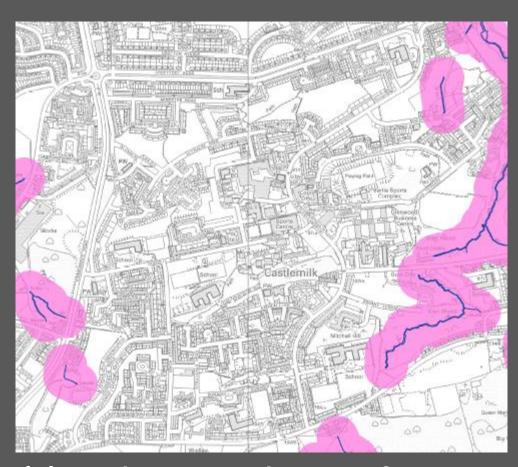
Overall structure of runoff reduction model

(Source: Phillips, 2014)

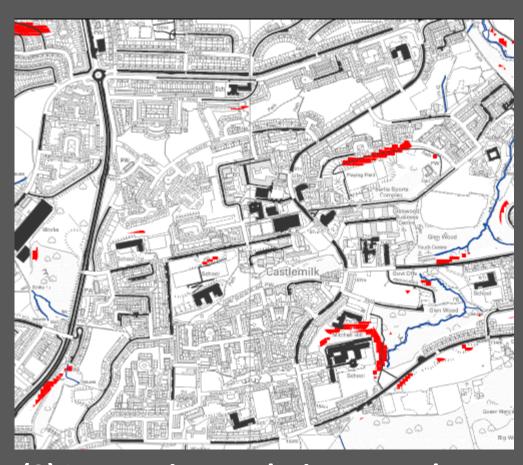
(1) Slope analysis: slope raster



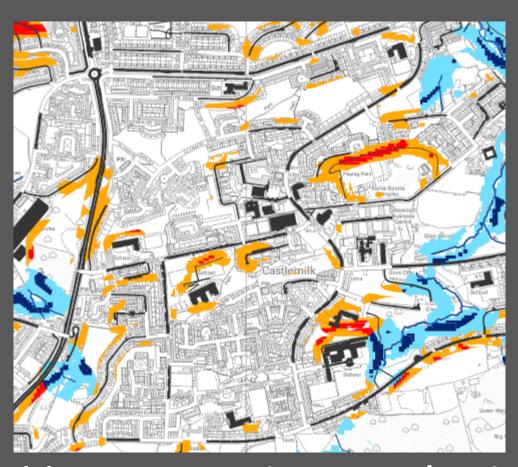
(1) Slope analysis: steeply sloped areas


(2) Catchment analysis: areas of impermeable ground

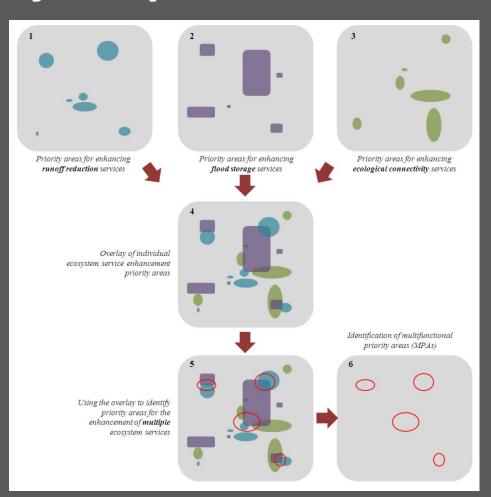
(2) Catchment analysis: large areas of impermeable ground + buffer



(2) Catchment analysis: surface waterbodies + buffer



(3) Integration analysis: steep slopes and artificial drainage features

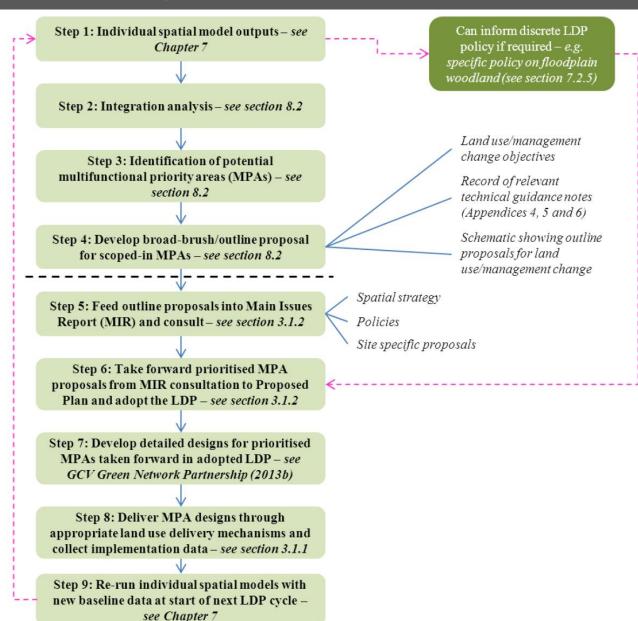


(3) Integration analysis: steep / medium slopes and artificial / natural drainage features

GI planning for multiple benefits – 'hotspots' of ecosystem service demand

Principle <u>A</u> from the Scottish Land Use Strategy:

"Opportunities for land use to deliver multiple benefits should be encouraged"


(Scottish Government, 2011b p.4)

Multiple ES model outputs can be analysed to identify ES priority areas / 'hotspots' (Source: Phillips, 2014)

Delivery mechanisms for strategic urban GI

Possible process for integrating strategic GI priorities with LDP policy (Source: Phillips, 2014)

Thank you!

References

Baró, F., Butger, R., Gómez-Baggethun, E., Hauck, J., Kopperoinen, L., Liquete, C., and Potschin, M. (2015). *Conceptual approaches to green infrastructure*. In Potschin, M. and Jax, K. (eds): OpenNESS Ecosystem Service Reference Book. EC FP7 Grant Agreement No.308428.

Bellamy, C., and Winn, J. (2013). *EcoServ-GIS Version 1 (England only): A Wildlife Trust Toolkit for Mapping Multiple Ecosystem Services* [online]. Available at: http://www.durhamwt.co.uk/wp-content/uploads/2012/06/EcoServ-GIS-Executive-Summary-Only-WildNET-Jan-2013-9-pages.pdf [accessed 15/04/14].

Chan, K.M.A., Shaw, M.R., Cameron, D.R., Underwood, E.C., and Daily, G.C. (2006). Conservation Planning for Ecosystem Services. *PLOS Biology*, 4(11), pp.2138-2152.

EEA (2006). *Urban sprawl in Europe: The ignored challenge*. EEA Report No.10/2006. Luxembourg: Office for Official Publications of the European Communities.

Eigenbrod, F., Armsworth, P.R., Anderson, B.J., Heinemeyer, A., Gillings, S., Roy, D.B., Thomas, C.D., and Gaston, K.J. (2010). Impact of proxy-based methods on mapping the distribution of ecosystem services. *Journal of Applied Ecology*, 47, pp.377-385.

References

Gret-Regamey, A., Celio, E., Klein, T.M., and Wissen-Hayek, U. (2013). Understanding ecosystem services trade-offs with interactive procedural modelling for sustainable urban planning. *Landscape and Urban Planning*, 109, pp.107-116.

Mace, M.G., Bateman, I., Albon, S., Balmford, A., Brown, C., Church, A., Haines-Young, R., Pretty, J.N., Turner, K., Vira, B., and Winn, J. (2011). *UK National Ecosystems Assessment Conceptual Framework and Methodology. In: The UK National Ecosystem Assessment Technical Report*. UK National Ecosystem Assessment, UNEP-WCMC, Cambridge.

Labiosa, W.B., Forney, W.M., Esnard, A.M., Mitsova-Boneva, D., Bernknopf, R., Hearn, P., Hogan, D., Pearlstine, L., Strong e, D., Gladwin, H., and Swain, E. (2013). An integrated multicriteria scenario evaluation web tool for participatory land-use planning in urbanized areas: The Ecosystem Portfolio Model. *Environmental Modelling & Software*, 41, pp.210-222.

Phillips, P.M. (2014). Land use planning in urban areas – towards an ecosystems approach. PhD Thesis, University of Strathclyde Department of Civil and Environmental Engineering.

Schneider, A., Friedl, M.A., and Potere, D. (2009). A New Map of Global Urban Extent from MODIS Satellite Data. *Environmental Research Letters*, 4, pp.1-11.

References

Scottish Government (2011a). *Green Infrastructure: Design and Placemaking*. Edinburgh: Scottish Government.

Scottish Government (2011b). *Getting the best from our land – A land use strategy for Scotland*. Edinburgh: Scottish Government.

Scottish Government (2014). Scottish Planning Policy. Edinburgh: Scottish Government.

Sheate, W.R., Eales, R.P., Daly, E., Baker, J., Murdoch, A., Hill, C., Ojike, U. and Karpouzoglou, T. (2012). Spatial representation and specification of ecosystem services: a methodology using land use/land cover data and stakeholder engagement. *Journal of Environmental Assessment Policy and Management*, 14(1), pp.1-36.

Susdrain (2012). The community for sustainable drainage. London: Susdrain.

UKNEA (2011) The UK National Ecosystem Assessment: Technical Report. UNEP-WCMC, Cambridge.